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Abstract It is shown that physically significanl time-dependent m i t i o n  mles (m) for 
dielectric relaxation should be defined to refer to the decay of the system’s response function, 
rather than that of its relaxntion function. An examination of the swchedfxponential function 
in lhe time domain and of the Havrilik-Negami function in the frequency domnin, to which 
experimenol results are oftea fined, shows that for most limes the mm must be proportional 
to the invese of the lime. This resdt is discussed in terms of the difference benveen global and 
local m s .  

1. Introduction 

One widely used approach to the calculation of the response of the dielectric polarization 
P(t) of a system on the removal of an applied electric field is to postulate a first-order 
differential equation for P(r) and define a transition W = -(l/P) dP/df [I]. The relaxation 
function of the system @(t) is defined to be the ratio P(t)/P(O) under these conditions, 
when the steady field was applied up to time f = 0. For systems in which @(t) decays 
exponentially with time, W is a constant and no problems arise as to its definition. However, 
for a large number of systems @(t)  does not exhibit simple exponential decay [1-3]. Instead 
a time dependence of @ ( t )  that can be fitted over a few decades d time to the Kohlrausch- 
Williams-Watts ( K W )  [4,5] stretched-exponential relaxation function exp(-[t/s]p) is often 
observed. Altematively, and often over a wider range of frequencies, the system’s response 
in the frequency domain is often fitted to the empirical Havriliak-Negami (HN) function 
[6,7] 1/[1 + ( i o ~ ) ~ ] V ,  which incorporates Jonscher’s ‘universal‘ law [I]. Such types of 
behaviour can be described formally in terms of a timedependent transition rate (TDTR) 
W ( t ] ,  which i s  related to the timecorrelation function of the polarization (P(f)P(O)) [8]. 
In this paper we show that this hansition rate has little basic physical significance, define a 
transition rate w ( f )  that may have a simple physical meaning, and examine and discuss its 
relationship to the experimental results. 

A number of theories of dielectric relaxation, such as the defect diffusion model 19-1 I] 
in its simplest form and the coupling models of Ngai and his co-workers [I21 assume that 
the transition rate W ( t )  for the polarization is associated with the relaxation of elements 
that start from a given well defined state at the time t = 0 when the steady electric field is 
removed. However, this is not in accord with the superposition principle, as has been noted 
by various authors [13,14]. According to this principle, on which is based the universally 
used relationships between a system’s response in the time domain and in the frequency 
domain [I], at every instant of time the field present then excites a different small fraction 
of the system, which immediately starts to relax in a way thht is not~influenced by the field. 
Hence, at time t = 0, the elements are in a distribution of states appropriate to thermal 
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equilibrium in the presence of the field. If one wants to consider elements in a definite state 
at time t = 0, the appropriate quantity is the response function @(t) ,  which describes the 
subsequent relaxation of that part of the system that was excited by the field present at time 
t = 0. The relaxation function is the sum of the responses of the fractions of this system 
that were excited by the field at all previous times and started relaxing immediately after 
they were cxcited, so, that @(t) is given by Jp"@(u)du. Thus, if one wants to develop a 
microscopic theory for a TDTR, it should apply to. that of the response function rather than 
that of the relaxation. function. In particular, the defect triggering model [9-1 I] and the 
coupling theories of Ngai and his co-workers [ 121 would predict a stretched-exponential 
behaviour for the response function. A simple application of this result would lead to the 
relaxation function being described by an incomplete gamma function, in contradiction with 
the experimental results. 

In this paper, we examine the form of the TDTR for the response function that would 
be required to account for the experimental results, and the implications of our findings. In 
section 2, we present a summary of the implications of the superposition principle, define the 
TDTR w(r) appropriate to the response function, and also consider the relationship between 
the TDTRs and time-correlation functions of the polarization. Then, in section 3, we calculate 
the form of ~ ( t )  appropriate to stretched-exponential decay of the relaxation function in 
the time domain and to the HN function in the frequency domain, and show that these types 
of behaviour require that for most times w(t )  be inversely proportional to the time t. The 
implications of this result, and in particular the need to distinguish between global and 
local response functions and TDTRs, are discussed in section 4, while our conclusions are 
summarized in section S. 

2. The theory of time-dependent transition rates 

In this paper, it is convenient to restrict our attention to the response of the dielectric 
polarization P ( t )  to an applied electric field E@),  but similar considerations apply to the 
response of the mechanical strain to an applied stress, for instance. 

The superposition principle, on which are based the standard connections between results 
in the frequency and time domains [l], requires that in the presence of a weak perturbation, 
whose energy is much less than the thermal energy ksT, the response of the system is the 
linear superposition of its responses to the application of the perturbation at each time in the 
past. According to linear-response theory [IS, 161, these responses each decay with time just 
as they would in the absence of the perturbation, and this leads to the fluctuation-dissipation 
theorem, since the decay of an excitation in the absence of a field will be the same whether 
it was produced by the applied field or by a thermal fluctuation. Incidentally, it is worth 
noting that according to this theory one cannot speak of field-induced transitions, as these 
take place at the same time (thermally stimulated) rate whether or not a weak field, with 
associated energy << IcBT, is applied. Rather, the effect of the field is to give a preferred 
direction to the transitions, and this leads to a net polarization, whose subsequent relaxation 
in the absence of a field is described by the system's relaxation function or response function. 

We start by summarizing the results that follow from the superposition principle, using 
essentially the notation of Kubo [15]. It is convenient to use a normalized response function 
r$(t) and for the sake 'of simplicity we assume that there is no instantaneous response, so 
that the dielectric susceptibility at infinite frequency is zero. In that case, we can define 
@ ( t )  by writing the response to a field E&) as 

P ( t )  = xrEo@(t) (1) 
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where xs is the static susceptibility. Thus, in accordance with the superposition principle, 
the response to a general field E ( t )  is 

i 

p ( t )  = xs [,E(u)W - du. (2 )  

For the special case of a steady field EO being applied up to time f = 0 and then removed, 
it follows that 

In this case 

P(0) = XSEO. (4) 

The system's relaxation function @(t) is most conveniently defined for this situation, in 
which 

PO) = P(O)@(t). (5) 

Hence, the relaxation and response functions ace related by the basic equation 

and it follows that 

@(t)  = -d@/dt. (7) 

This establishes the connection between our notation and that commonly used in analysing 
dielectric relaxation [16]. 

Another interesting special case is that a periodic field, E @ )  = Eoexp(-iot), for which 
it follows from equation (2) that 

p( t )  = X ( W ) E ( t )  (8) 

where 
m 

x ( 4  = x. @ ( x )  exp(iW dx. (9) 

This establishes the standard connection between results obtained in the frequency domain 
and those obtained in the time domain [I]. 

We now consider the analysis of the time dependence of tbe polarization following 
the removal of a steady applied field in terms of transition rates. Such a description is 
not the simplest one to derive formally [SI, but seems attractive since it can be related to 
simple concepts such as rate equations. For systems in which the relaxation function decays 
exponentially with time, one can write 

dP/d t  = -WoP(t) (10) 
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where WO is just the inverse of the relaxation time. For systems in which the relaxation 
function is not so simple, but can be approximated by a stretched-exponential function of 
time, for instance, one possible approach is to replace the constant transition rate WO by a 
time-dependent transition rate (TDTR) W(t ) ,  and so to Write 

It has been shown [SI that this TDTR is related to the correlation function of the system’s 
dipole moment, so there is no formal problem in defining it. However as we discussed in 
section 1, it is not valid to calculate W f t )  on the assumption that all the relaxing elements in 
the system were in the same well defined state when the steady field was removed. Instead, 
they will be in a distribution of states corresponding to the thermal equilibrium situation in 
the presence of the field, so that the application of any simple model to the calculation of 
W ( t )  is quite complicated. This fundamental difficulty can be avoided if one considers only 
elements that were affected by an impulse field applied at time f = 0, since these could 
all be in the same initial state. Accordingly, we now introduce the TDTR for the response 
to an impulse field, which we denote by w(t ) .  These two rates describe the decay of the 
relaxation function and of the response function respectively, i.e. 

d@,/df = -W(t)@(Z) 

and 

d+/dt = - ~ ( t ) @ ( t ) .  (13) 

Hence, it follows from equation (7) that W(t) and w ( t )  are connected by the equation 

~ ( t )  = W ( t )  - (l/W)dW/dt. (14) 

Incidentally, the use of w(t)  also overcomes the various objections in the literature to the 
use of the TDTR W ( t )  [13,14], and gives a definite physical meaning to the origin of time 
for w(t ) ,  namely the moment when the instantaneous field was applied to the system. 

The question still arises as to whether any TDTR has a basic physical significance. It is 
certainly possible that the environment of a dipole gradually changes with time 1121 or that 
defects start to move towards it 19-1 I], and that this leads to an effective relaxation rate 
that decreases as time progresses. If a definite initial state for the elements is postulated, 
the corresponding TDTR is that associated with the response function, ~ ( t ) .  However, the 
form predicted for w(t)  by these theories leads to a stretched-exponential decay with time 
of the response function rather than of the relaxation function, which would not seem to be 
in accordance with the experimental results. We return to this point in section 4, after first 
presenting in the next section the form of ~ ( t )  required to account for the types of response 
function that are usually observed in experiments. 

Finally, before doing this, we consider briefly the relationship between the above 
analysis, which was based purely on the superposition principle, and linear-response theory 
[15,16]. According to the latter, the relaxation function can be expressed in terms of field- 
kee correlatiqn functions of the system’s dipole moment [la], and in particular, for fields 
and moments in the z direction, the relaxation function 
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where () denotes a configurational average. This would seem to suggest that the relaxation 
function has some fundamental significance, and so perhaps that W ( t )  would also have. 
However, the configurational average must be taken over a system in thermal equilibrium, 
and so refer to an equilibrium renewal process [17], in which the distribution of initial states 
is that appropriate to thermal equilibrium. On the other hand, as noted above, microscopic 
models usually treat systems undergoing ordinary renewal processes, in which the initial 
state is such that a transition took place and the system subsequently started relaxing at time 
t = 0. The relationship between these two types of process is essentially the same as that 
discussed above between the relaxation function and the response function, and so between 
the TDTRS W ( t )  and w(f). 

3. The empirical form of the time-dependent transition rate 

Since we have shown that it is the TDTR w(t) associated with the response function that 
may be of physical significance, it is of interest to examine its form for two types of 
response to which the experimental results on dielectric polarization are often fitted. Such 
an examination will provide a basis for the discussion, in the next section, of the relationship 
between ~ T R S  and the experimental results. 

The first example that we consider is that in  which the relaxation function is described 
by the KWW stretched-exponential function [4,5], so that 

@ ( t )  = exp(-[i/z]fl). (16) 

In this case 

w(t) = (I - B)r/ t  + pt[r/s]!+' (17) 

and the first term on the left-hand side is the dominant one for 

[t/r18-' (1 - N B .  (18 )  

On the other hand, the experimental data are usually only fitted to equation (16) for 
0.99 > @(t) > 0.01, and for most of this time range the inequality (18) holds true. 
For ,3 = i, for instance, @(t) is in the required range for 0.0001 < t / z  21, while the 
first term in w( t )  dominates for t/s < 1. Thus, for most of the times of interest w(t )  is 
inversely proportional to the time. 

The other example that we consider is that in which the results in the frequency domain 
are represented by the HN function [6], so that 

x(w)  = x d 1  + (ior)"lY. (19) 

In this case, @(t), @(t) and w(t )  have to be evaluated by numerical integration, using 
the representation of the HN function as a superposition of relaxation times r with the 
distribution function given by HN 161, namely 

gun[tl) = (~/n)(t/rH)"~ sin(ye)/[(s/s,t2" + z(r/TH)m cos(an) + IIYD (20) 

where B is given by 

tan(@) = sin(ye)/[(r/rH)" +cos(@)] 0 < B < n. (21) 
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Incidentally, because of the complicated form of the integrand, we found it more efficient 
to use a fixed-point integration formula such as Simpson's rule rather than formulae that 
choose different points for different values of the frequency or the time. 

Before presenting the results of our calculations for a set of typical values of the 
parameters, we note two quite general features of these results, which ace also shared 
by the Dissado-Hill function [18] and by Jonscher's 'universal' law [l]. These concern the 
asymptotic forms of $(t)  at long and short times, and make use of Taubenan theorems to 
relate the response in the frequency and the time domains. In general, if as w -+ 00, 

@(w) - (or#-', where 0 < n 4 I, then as t -+ 0, $(t)  - (f/-&n and so 
w(t )  - n/(t/rH). Similarly, if as w -+ 0, $(U) - 1 - (wrH)'",where 0 < m < 1, 
then as f + 00, $(I) - (t/r~)-('+"') and so w(t )  - (1 i m ) / ( f / r H ) .  For the HN function, 
$(U) has the above limiting forms, which 1 - n = ay and m = a. 

We now present in figure 1 the results of our calculations of W ( t )  and ~ ( t )  for a typical 
set of parameters, namely r H  = 2.92, a = 0.81 and y = 0.51, the values which according to 
Alvarez et a1 1191 give the best fit to exp(t'/'). From a comparison of the continuous line, 
which refers to w(r), with the dashed line representing a function proportional to I / t ,  we see 
that w(t) is inversely proportional to I for most of the time range, with only slight deviations 
from a straight line in the region of the crossover between the two asymptotic forms of the 
behaviour. This arises because the straight lines corresponding to these forms intercept the 
line log(T/rH) = 0 at two points with a distance between them of log(n)-log(l+m). From 
the dotted line, which represents W ( t ) ,  we note that W ( t )  is also proportional to I / t  at long 
times, rather than to t-'I2 as for the corresponding stretched-exponential function. This is 
in accord with the results of Alvarez etnl [19], inreralin, that the stretched exponential can 
only be fitted to the HN function over a limited range of times or frequencies. Very similar 
results are obtained with other values of the HN parameters. 

log t 

Fiyre 1. The logarithms of me mms as functions of log(t) for the HN function with RI = 2.9% 
a = 0.81 and y = 0.51, which corresponds approximately to exp(-t'f2). The continuous line 
showsihemmur(r) fartheresponsefundionandthedouedlinethemm W ( t )  fortherelzalion 
function, while the dashed line shows, for comparison, B function proportionxl to 1 /t .  

Our conclusion from the above results is that the TDTR w(t) has the same very specific 
form at most values of the time both for systems in which the dielectric relaxation is 
described in the time domain by a stretched-exponential function and for tbose in which the 
response in the frequency domain is described by the HN function. 
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4. Discussion 

While the TDTR w ( t )  for the dielectric response function could in principle be of physical 
significance, the results presented in the previous section indicate that, for a system having 
a scaling time r ,  at most times these rates are inversely proportional to t / t ,  with a constant 
of proportionality that lies between zero and unity at short times and between unity and 
two at long times. It is certainly far from simple to devise a theory of TDTRs having such 
properties, and most microscopic theories using TDTRs so not satisfy these requirements. 
The natural conclusion would seem to be that such rates do not have any fundamental 
physical meaning, and that one should look for some different approach to the calculation 
of a system's dielectric response. Incidentally, one such possible approach is provided by 
the theory of Dissado et al [NI, which predicts (cf equation (IO) of that paper) that at 
long times there is an effective transition rate inversely proportional to the time. However, 
an approach in terms of " r R s  is also possible, since the above conclusion concerning the 
TDTRs is only partially correct. While the TDTR w(t )  deduced directly from the experimental 
results as in the previous section may not be very meaningful, there can be a function w ( t )  
of the form predicted by the various theories that corresponds to the experimental results. 
The reason for this is that the TDTR was calculated in section 3 from the observed global 
response of the system, and so is only meaningful if all the elements in the system have 
exactly the same response function. Otherwise a distinction has to be made between the 
global TDTRs, derived from the macroscopic properties of the system, and the local TDTRS 
of the individual elements. Such a distinction corresponds to the difference between the 
global response function of the whole system and the local response functions of which it 
is the sum. 

In order to clarify this distinction and hence the possible meaning of a TDTR ~ ( t ) ,  it is 
useful to start by considering an alternative approach to the explanation of non-exponential 
relaxation, namely one that attributes it to a distribution of relaxation times (DRTS). In this 
approach, the observed relaxation or response functions are attributed to a superposition of 
processes with constant transition rates l/r occurring in parallel with a distribution g(r )  of 
the relaxation times t [201. While this is always possible formally, there is not yet a good 
explanation of why the same form of g(t) is observed in a variety of different systems. 
The alternative approach that we suggest is to attribute the response to a superposition of 
processes having a distribution of TDTRs w( t )  for their response functions, all of similar 
form but with different values of the parameters because-of the inhomogeneity of the 
system. Incidentally, such a superposition is made more plausible by the recent experimental 
evidence that glasses are microscopically quite inhomogeneous 121,221. The form of these 
TDTRs and response functions need not be the same as those for the macroscopic system, 
just as it is not for the DRT approach. The number of possible forms of response functions 
or TDTRS ~ ( t )  and distributions of parameters that can fit the experimental results is very 
large, and the problem is to find appropriate combinations that are sufficiently general and 
physically plausible. 

5. Conclusions 

Our main conclusion is that time-dependent transition rates ~ ( t )  can in principle be usefully 
defined only for the dielectric response function, and not for the relaxation function as in 
many popular approaches. For the response function, the experimental results indicate that, 
for a system having a scaling time t, at most times these rates are inversely proportional 
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to t / t ,  with a constant of proportionality that lies between zero and unity ar short times 
and between unity and two at long times. Such a behaviour is not predicted by any of the 
current theories. However, if allowance is made for the difference between global and local 
response funcfions, the requirement that the w(t )  appropriate to each element have the same 
generic form, with different values of the parameters because of the inhomogeneity of the 
system, cold well provide an explanation for the observed non-exponential relaxation. 
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